organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dibenzoyl-1-phenyl-3,5-di-2-thienylcyclohexanol

Xian-Qiang Huang^a and Jin-Xian Wang^{b*}

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bDepartment of Chemistry, Northwest Normal University, Lanzhou Gansu Province 730072, People's Republic of China Correspondence e-mail: hxqqxh2008@163.com

Received 18 September 2007; accepted 24 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.077; wR factor = 0.269; data-to-parameter ratio = 14.0.

The title compound, $C_{34}H_{28}O_3S_2$, was synthesized by the reaction of thiophene-2-carbaldehyde with acetophenone and NaOH under phase-transfer catalysis and solvent-free conditions. The central six-membered ring adopts a chair conformation and all the bulky side groups are located in equatorial positions. The hydroxyl group is involved in weak intramolecular hydrogen bonding.

Related literature

The crystal structure of 2,4-dibenzoyl-3,5-bis(4-methoxyphenyl)-1-phenylcyclohexanol was reported by Luo *et al.* (2006).

Experimental

Crystal data

 $C_{34}H_{28}O_3S_2$ $V = 5680.2 (16) Å^3$ $M_r = 548.68$ Z = 8Orthorhombic, *Pbca*Mo K α radiationa = 19.477 (3) Å $\mu = 0.22 \text{ mm}^{-1}$ b = 12.1666 (19) ÅT = 298 (2) Kc = 23.970 (4) Å $0.53 \times 0.17 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.892, \ T_{\rm max} = 0.983$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	352 parameters
$wR(F^2) = 0.269$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$
4916 reflections	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm A}^{-3}$

26904 measured reflections 4916 independent reflections 2398 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.080$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	H···A	$D \cdots A$	$D - H \cdots A$
O1-H1···O2	0.82	2.08	2.663 (5)	127

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2306).

References

Luo, X. & Shan, Z. (2006). Acta Cryst. E62, 01631-01632.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, o4168 [doi:10.1107/S1600536807046843]

2,4-Dibenzoyl-1-phenyl-3,5-di2-thienylcyclohexanol

X.-Q. Huang and J.-X. Wang

Comment

In this paper, we present the title compound, (I), synthesized through the condensation and Micheal addition of thiophene-2-carbaldehyde with acetophenone under tetrabutyl ammonium bromide and solvent-free conditions.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the related compound (Luo *et al.*, 2006). The hydroxyl group is involved in weak intramolecular hydrogen bonding (Table 1).

Experimental

Acetophenone (6.25 mmol), freshly distilled thiophene-2-carbaldehyde (3.125 mmol) and NaOH (6.25 mmol), tetrabutyl ammonium bromide (1 mmol), were aggregated with a glass paddle in an open flask. The resulting mixture was washed with water several times to remove NaOH and was recrystallized from ethanol, affording the title compound as a crystalline solid. Elemental analysis: calculated for $C_{34}H_{28}O_3S_2$: C 74.42, H 5.14%; found: C 74.38, H 5.22%.

Refinement

All H atoms were positioned geometrically (C—H 0.93–0.98 Å, O—H 0.82 Å) and refined using a riding model, with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the parent atom.

Figures

Fig. 1. *ORTEP* drawing of the title complex with atomic numbering scheme and displacement ellipsoids at 30% probability level.

2,4-Dibenzoyl-1-phenyl-3,5-di-2-thienylcyclohexanol

Crystal data

 $C_{34}H_{28}O_3S_2$ $M_r = 548.68$ Orthorhombic, *Pbca* a = 19.477 (3) Å b = 12.1666 (19) Å c = 23.970 (4) Å

 $D_{\rm x} = 1.283 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3335 reflections $\theta = 2.6-25.6^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 298 (2) K $V = 5680.2 (16) \text{ Å}^3$ Z = 8 $F_{000} = 2304$

Data collection

Bruker SMART CCD area-detector diffractometer	4916 independent reflections
Radiation source: fine-focus sealed tube	2398 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -23 \rightarrow 18$
$T_{\min} = 0.892, \ T_{\max} = 0.983$	$k = -14 \rightarrow 14$
26904 measured reflections	$l = -28 \rightarrow 27$

Stick, colourless

 $0.53 \times 0.17 \times 0.08 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.269$	$w = 1/[\sigma^2(F_o^2) + (0.1283P)^2 + 5.0247P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
4916 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.61 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.28423 (19)	0.6427 (3)	0.03495 (16)	0.0698 (11)
H1	0.2465	0.6726	0.0334	0.105*

O2	0.15784 (18)	0.6294 (3)	0.07682 (17)	0.0677 (11)
O3	0.3657 (2)	0.5494 (3)	0.20752 (16)	0.0656 (10)
S1	0.20614 (8)	0.29648 (12)	0.17794 (6)	0.0693 (5)
S2	0.52146 (10)	0.51469 (18)	0.11031 (9)	0.0962 (7)
C1	0.2765 (2)	0.5261 (4)	0.02428 (19)	0.0477 (12)
C2	0.2313 (2)	0.4741 (4)	0.07074 (19)	0.0434 (11)
H2	0.2255	0.3958	0.0625	0.052*
C3	0.2641 (2)	0.4855 (4)	0.12933 (18)	0.0430 (11)
Н3	0.2678	0.5643	0.1373	0.052*
C4	0.3367 (2)	0.4390 (4)	0.12956 (18)	0.0418 (11)
H4	0.3345	0.3598	0.1223	0.050*
C5	0.3822 (2)	0.4937 (4)	0.0843 (2)	0.0487 (12)
Н5	0.3842	0.5727	0.0920	0.058*
C6	0.3487 (2)	0.4774 (4)	0.0277 (2)	0.0511 (12)
H6A	0.3462	0.3993	0.0198	0.061*
H6B	0.3772	0.5111	-0.0007	0.061*
C7	0.2462 (3)	0.5062 (4)	-0.0332 (2)	0.0514 (12)
C8	0.2346 (4)	0.3995 (5)	-0.0542 (3)	0.086 (2)
H8	0.2420	0.3388	-0.0314	0.103*
С9	0.2124 (4)	0.3843 (6)	-0.1082 (3)	0.092 (2)
H9	0.2057	0.3135	-0.1218	0.110*
C10	0.2006 (3)	0.4698 (6)	-0.1410 (3)	0.0753 (17)
H10	0.1858	0.4575	-0.1774	0.090*
C11	0.2092 (3)	0.5711 (7)	-0.1239 (3)	0.086 (2)
H11	0.2008	0.6292	-0.1482	0.103*
C12	0.2301 (3)	0.5915 (4)	-0.0712(2)	0.0579 (14)
H12	0.2341	0.6641	-0.0594	0.069*
C13	0.1598 (3)	0.5287 (4)	0.0718 (2)	0.0493 (12)
C14	0.0959 (3)	0.4646 (4)	0.0683 (2)	0.0504 (12)
C15	0.0930 (3)	0.3540 (4)	0.0557 (2)	0.0605 (14)
H15	0.1334	0.3148	0.0499	0.073*
C16	0.0307 (3)	0.3015 (5)	0.0517 (3)	0.0740 (17)
H16	0.0296	0.2270	0.0431	0.089*
C17	-0.0284(3)	0.3552 (6)	0.0599 (3)	0.0797 (18)
H17	-0.0701	0.3184	0.0569	0.096*
C18	-0.0271(3)	0.4650 (7)	0.0727 (3)	0.0821 (19)
H18	-0.0682	0.5019	0.0786	0.099*
C19	0.0338 (3)	0.5217 (5)	0.0771 (2)	0.0641 (15)
H19	0.0339	0.5962	0.0857	0.077*
C20	0.3696 (2)	0.4576 (4)	0.1866 (2)	0.0472 (12)
C21	0.4073 (2)	0.3687 (4)	0.2159 (2)	0.0514 (12)
C22	0.4086 (3)	0.2613 (5)	0.1975 (3)	0.0751 (17)
H22	0.3836	0.2411	0.1660	0.090*
C23	0.4472 (4)	0.1832 (6)	0.2260 (3)	0.096 (2)
H23	0.4461	0.1102	0.2145	0.115*
C24	0.4863 (4)	0.2127 (7)	0.2703 (3)	0.092 (2)
H24	0.5139	0.1608	0.2879	0.111*
C25	0.4850 (4)	0.3185 (8)	0.2891 (3)	0.099 (2)
H25	0 5108	0 3377	0 3203	0 119*
	0.0100	0.0011	0.0200	U.117

C26	0.4461 (3)	0.3978 (6)	0.2624 (2)	0.0746 (17)
H26	0.4458	0.4698	0.2755	0.089*
C27	0.2211 (2)	0.4357 (4)	0.17447 (19)	0.0461 (11)
C28	0.1907 (3)	0.4878 (5)	0.2192 (2)	0.0691 (16)
H28	0.1918	0.5633	0.2254	0.083*
C29	0.1577 (4)	0.4108 (7)	0.2542 (3)	0.099 (2)
H29	0.1347	0.4313	0.2865	0.119*
C30	0.1620 (3)	0.3066 (6)	0.2374 (3)	0.0780 (18)
H30	0.1429	0.2473	0.2563	0.094*
C31	0.4541 (3)	0.4490 (4)	0.0861 (2)	0.0549 (13)
C32	0.4758 (2)	0.3415 (4)	0.0676 (2)	0.0520 (13)
H32	0.4477	0.2907	0.0498	0.062*
C33	0.5462 (4)	0.3241 (7)	0.0806 (3)	0.096 (2)
H33	0.5686	0.2576	0.0746	0.116*
C34	0.5765 (3)	0.4104 (8)	0.1017 (3)	0.098 (3)
H34	0.6228	0.4136	0.1108	0.118*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.077 (3)	0.052 (2)	0.080 (3)	-0.0065 (18)	-0.008(2)	0.0067 (19)
O2	0.063 (2)	0.043 (2)	0.097 (3)	0.0091 (17)	0.002 (2)	-0.006 (2)
03	0.075 (3)	0.050 (2)	0.072 (2)	0.0017 (18)	-0.0136 (19)	-0.0172 (19)
S1	0.0824 (11)	0.0493 (9)	0.0763 (10)	-0.0061 (7)	0.0135 (8)	0.0047 (7)
S2	0.0794 (13)	0.1066 (16)	0.1025 (15)	-0.0131 (11)	-0.0025 (10)	-0.0136 (11)
C1	0.055 (3)	0.043 (3)	0.045 (3)	0.000 (2)	0.000 (2)	0.001 (2)
C2	0.048 (3)	0.033 (2)	0.050 (3)	0.002 (2)	-0.001 (2)	-0.003 (2)
C3	0.045 (3)	0.037 (3)	0.047 (3)	0.000 (2)	-0.005 (2)	-0.004 (2)
C4	0.043 (3)	0.034 (2)	0.049 (3)	-0.0024 (19)	-0.002 (2)	-0.002 (2)
C5	0.053 (3)	0.043 (3)	0.050 (3)	-0.005 (2)	0.003 (2)	0.004 (2)
C6	0.049 (3)	0.056 (3)	0.048 (3)	0.004 (2)	0.001 (2)	0.005 (2)
C7	0.053 (3)	0.053 (3)	0.048 (3)	0.004 (2)	-0.004 (2)	0.005 (2)
C8	0.139 (6)	0.053 (4)	0.066 (4)	0.015 (4)	-0.026 (4)	0.001 (3)
C9	0.118 (6)	0.088 (5)	0.069 (4)	0.005 (4)	-0.020 (4)	-0.017 (4)
C10	0.078 (4)	0.093 (5)	0.055 (4)	0.002 (4)	-0.006 (3)	0.006 (4)
C11	0.089 (5)	0.089 (5)	0.079 (5)	-0.001 (4)	-0.014 (4)	0.029 (4)
C12	0.058 (3)	0.048 (3)	0.067 (4)	-0.003 (2)	-0.012 (3)	0.023 (3)
C13	0.054 (3)	0.037 (3)	0.057 (3)	0.008 (2)	0.000 (2)	-0.006 (2)
C14	0.053 (3)	0.043 (3)	0.055 (3)	0.005 (2)	-0.004 (2)	0.003 (2)
C15	0.055 (3)	0.052 (3)	0.074 (4)	0.000 (3)	-0.003 (3)	-0.001 (3)
C16	0.065 (4)	0.069 (4)	0.089 (4)	-0.014 (3)	-0.009 (3)	-0.002 (3)
C17	0.059 (4)	0.086 (5)	0.095 (5)	-0.011 (3)	-0.010 (3)	0.006 (4)
C18	0.053 (4)	0.099 (5)	0.094 (5)	0.015 (3)	0.003 (3)	0.015 (4)
C19	0.045 (3)	0.067 (4)	0.081 (4)	0.010 (3)	0.006 (3)	0.007 (3)
C20	0.045 (3)	0.046 (3)	0.051 (3)	-0.003 (2)	-0.002 (2)	0.000 (2)
C21	0.046 (3)	0.060 (3)	0.049 (3)	0.002 (2)	-0.004 (2)	0.007 (2)
C22	0.090 (4)	0.046 (3)	0.090 (4)	0.006 (3)	-0.032 (3)	0.003 (3)
C23	0.106 (5)	0.068 (4)	0.114 (6)	0.020 (4)	-0.023 (5)	0.025 (4)

C24	0.086 (5)	0.097 (6)	0.094 (5)	0.026 (4)	-0.018 (4)	0.031 (4)
C25	0.100 (5)	0.131 (7)	0.066 (4)	0.032 (5)	-0.027 (4)	0.004 (4)
C26	0.075 (4)	0.091 (5)	0.058 (4)	0.015 (3)	-0.011 (3)	-0.008 (3)
C27	0.046 (3)	0.043 (3)	0.049 (3)	0.002 (2)	0.002 (2)	-0.001 (2)
C28	0.089 (4)	0.055 (4)	0.063 (3)	-0.003 (3)	0.025 (3)	-0.009 (3)
C29	0.117 (6)	0.110 (6)	0.069 (4)	-0.020 (5)	0.043 (4)	-0.006 (4)
C30	0.074 (4)	0.089 (5)	0.071 (4)	-0.018 (3)	0.015 (3)	0.013 (4)
C31	0.054 (3)	0.057 (3)	0.054 (3)	0.002 (2)	0.007 (2)	0.004 (2)
C32	0.025 (2)	0.034 (2)	0.097 (4)	0.0049 (18)	0.004 (2)	-0.010 (2)
C33	0.076 (5)	0.106 (6)	0.107 (6)	0.035 (4)	-0.006 (4)	-0.004 (5)
C34	0.052 (4)	0.181 (9)	0.062 (4)	-0.005 (5)	0.000 (3)	0.022 (5)

Geometric parameters (Å, °)

O1—C1	1.450 (6)	C13—C14	1.471 (7)
O1—H1	0.8200	C14—C15	1.380 (7)
O2—C13	1.232 (6)	C14—C19	1.412 (7)
O3—C20	1.226 (6)	C15—C16	1.375 (8)
S1—C30	1.669 (6)	C15—H15	0.9300
S1—C27	1.721 (5)	C16—C17	1.338 (9)
S2—C31	1.643 (6)	С16—Н16	0.9300
S2—C34	1.673 (9)	C17—C18	1.370 (9)
C1—C7	1.519 (7)	С17—Н17	0.9300
C1—C6	1.527 (7)	C18—C19	1.375 (9)
C1—C2	1.554 (7)	C18—H18	0.9300
C2—C13	1.543 (7)	С19—Н19	0.9300
C2—C3	1.549 (6)	C20—C21	1.484 (7)
С2—Н2	0.9800	C21—C22	1.379 (7)
C3—C27	1.496 (6)	C21—C26	1.394 (7)
C3—C4	1.523 (6)	C22—C23	1.391 (8)
С3—Н3	0.9800	C22—H22	0.9300
C4—C20	1.527 (6)	C23—C24	1.356 (10)
C4—C5	1.551 (6)	С23—Н23	0.9300
C4—H4	0.9800	C24—C25	1.364 (10)
C5—C31	1.502 (7)	C24—H24	0.9300
C5—C6	1.519 (7)	C25—C26	1.383 (9)
С5—Н5	0.9800	С25—Н25	0.9300
С6—Н6А	0.9700	C26—H26	0.9300
С6—Н6В	0.9700	C27—C28	1.378 (7)
C7—C8	1.411 (8)	C28—C29	1.413 (8)
C7—C12	1.415 (7)	C28—H28	0.9300
C8—C9	1.378 (9)	C29—C30	1.332 (9)
С8—Н8	0.9300	С29—Н29	0.9300
C9—C10	1.323 (9)	С30—Н30	0.9300
С9—Н9	0.9300	C31—C32	1.444 (7)
C10-C11	1.309 (9)	C32—C33	1.422 (9)
C10—H10	0.9300	С32—Н32	0.9300
C11—C12	1.352 (8)	C33—C34	1.307 (10)
C11—H11	0.9300	С33—Н33	0.9300

С12—Н12	0.9300	С34—Н34	0.9300
C13—O2	1.232 (6)		
C1—O1—H1	109.5	C15-C14-C13	124.3 (5)
C30—S1—C27	93.2 (3)	C19—C14—C13	117.2 (5)
C31—S2—C34	95.7 (4)	C16-C15-C14	120.3 (5)
O1—C1—C7	110.9 (4)	C16—C15—H15	119.8
O1—C1—C6	106.0 (4)	C14—C15—H15	119.8
C7—C1—C6	110.2 (4)	C17—C16—C15	121.5 (6)
O1—C1—C2	109.3 (4)	С17—С16—Н16	119.3
C7—C1—C2	111.4 (4)	С15—С16—Н16	119.3
C6—C1—C2	109.0 (4)	C16—C17—C18	119.5 (6)
C13—C2—C3	108.6 (4)	С16—С17—Н17	120.2
C13—C2—C1	110.4 (4)	С18—С17—Н17	120.2
C3—C2—C1	112.3 (4)	C17—C18—C19	121.5 (6)
C13—C2—H2	108.5	C17-C18-H18	119.2
С3—С2—Н2	108.5	C19-C18-H18	119.2
C1—C2—H2	108.5	C18—C19—C14	118.7 (6)
C27—C3—C4	111.5 (4)	C18—C19—H19	120.6
C27—C3—C2	112.8 (4)	С14—С19—Н19	120.6
C4—C3—C2	110.7 (4)	O3—C20—C21	120.0 (4)
С27—С3—Н3	107.1	O3—C20—C4	118.4 (4)
С4—С3—Н3	107.1	C21—C20—C4	121.5 (4)
С2—С3—Н3	107.1	C22—C21—C26	119.1 (5)
C3—C4—C20	109.7 (4)	C22—C21—C20	123.3 (5)
C3—C4—C5	111.6 (4)	C26—C21—C20	117.5 (5)
C20—C4—C5	108.8 (4)	C21—C22—C23	120.0 (6)
C3—C4—H4	108.9	C21—C22—H22	120.0
C20—C4—H4	108.9	С23—С22—Н22	120.0
C5—C4—H4	108.9	C24—C23—C22	120.6 (7)
C31—C5—C6	112.2 (4)	С24—С23—Н23	119.7
C31—C5—C4	111.0 (4)	С22—С23—Н23	119.7
C6—C5—C4	108.8 (4)	C23—C24—C25	119.8 (6)
С31—С5—Н5	108.2	C23—C24—H24	120.1
С6—С5—Н5	108.2	С25—С24—Н24	120.1
C4—C5—H5	108.2	C24—C25—C26	121.1 (7)
C5—C6—C1	113.1 (4)	С24—С25—Н25	119.5
С5—С6—Н6А	108.9	С26—С25—Н25	119.5
С1—С6—Н6А	108.9	C25—C26—C21	119.4 (6)
С5—С6—Н6В	108.9	С25—С26—Н26	120.3
C1—C6—H6B	108.9	C21—C26—H26	120.3
H6A—C6—H6B	107.8	C28—C27—C3	128.1 (4)
C8—C7—C12	114.3 (5)	C28—C27—S1	110.0 (4)
C8—C7—C1	122.2 (4)	C3—C27—S1	121.9 (3)
C12—C7—C1	123.5 (5)	C27—C28—C29	110.6 (5)
C9—C8—C7	120.6 (6)	C27—C28—H28	124.7
С9—С8—Н8	119.7	C29—C28—H28	124.7
С7—С8—Н8	119.7	C30—C29—C28	115.0 (6)
С10—С9—С8	120.5 (7)	С30—С29—Н29	122.5
С10—С9—Н9	119.8	С28—С29—Н29	122.5

С8—С9—Н9	119.8	C29—C30—S1	111.1 (5)
C11—C10—C9	122.1 (6)	С29—С30—Н30	124.4
C11-C10-H10	118.9	S1—C30—H30	124.4
C9—C10—H10	118.9	C32—C31—C5	126.3 (5)
C10-C11-C12	120.3 (6)	C32—C31—S2	108.4 (4)
C10-C11-H11	119.8	C5—C31—S2	125.3 (4)
C12—C11—H11	119.8	C33—C32—C31	110.5 (5)
C11—C12—C7	122.2 (6)	С33—С32—Н32	124.7
C11—C12—H12	118.9	С31—С32—Н32	124.7
C7—C12—H12	118.9	C34—C33—C32	113.6 (7)
O2—C13—C14	120.4 (4)	С34—С33—Н33	123.2
O2—C13—C14	120.4 (4)	С32—С33—Н33	123.2
O2—C13—C2	117.2 (4)	C33—C34—S2	111.6 (5)
O2—C13—C2	117.2 (4)	С33—С34—Н34	124.2
C14—C13—C2	122.3 (4)	S2—C34—H34	124.2
C15—C14—C19	118.5 (5)		
O1—C1—C2—C13	59.8 (5)	O2—C13—C14—C19	-6.8 (7)
C7—C1—C2—C13	-63.1 (5)	C2-C13-C14-C19	171.8 (5)
C6—C1—C2—C13	175.2 (4)	C19—C14—C15—C16	0.3 (8)
O1—C1—C2—C3	-61.6 (5)	C13—C14—C15—C16	-178.1 (5)
C7—C1—C2—C3	175.5 (4)	C14—C15—C16—C17	-0.2 (9)
C6—C1—C2—C3	53.8 (5)	C15-C16-C17-C18	-0.2 (10)
C13—C2—C3—C27	57.6 (5)	C16-C17-C18-C19	0.4 (10)
C1—C2—C3—C27	-180.0 (4)	C17—C18—C19—C14	-0.3 (9)
C13—C2—C3—C4	-176.6 (4)	C15-C14-C19-C18	-0.1 (8)
C1—C2—C3—C4	-54.2 (5)	C13—C14—C19—C18	178.4 (5)
C27—C3—C4—C20	-57.1 (5)	C3—C4—C20—O3	-48.0 (6)
C2—C3—C4—C20	176.4 (4)	C5—C4—C20—O3	74.4 (5)
C27—C3—C4—C5	-177.8 (4)	C3—C4—C20—C21	133.8 (4)
C2—C3—C4—C5	55.7 (5)	C5—C4—C20—C21	-103.8 (5)
C3—C4—C5—C31	178.5 (4)	O3—C20—C21—C22	174.0 (5)
C20—C4—C5—C31	57.3 (5)	C4—C20—C21—C22	-7.8 (8)
C3—C4—C5—C6	-57.5 (5)	O3—C20—C21—C26	-9.7 (7)
C20—C4—C5—C6	-178.7 (4)	C4—C20—C21—C26	168.5 (5)
C31—C5—C6—C1	-177.8 (4)	C26—C21—C22—C23	1.3 (9)
C4—C5—C6—C1	59.0 (5)	C20—C21—C22—C23	177.6 (6)
O1—C1—C6—C5	60.3 (5)	C21—C22—C23—C24	-3.1 (11)
C7—C1—C6—C5	-179.7 (4)	C22—C23—C24—C25	3.6 (12)
C2—C1—C6—C5	-57.2 (5)	C23—C24—C25—C26	-2.2 (12)
O1—C1—C7—C8	178.9 (5)	C24—C25—C26—C21	0.4 (11)
C6—C1—C7—C8	61.9 (7)	C22—C21—C26—C25	0.0 (9)
C2—C1—C7—C8	-59.2 (7)	C20—C21—C26—C25	-176.4 (6)
O1—C1—C7—C12	1.9 (7)	C4—C3—C27—C28	117.7 (6)
C6-C1-C7-C12	-115.1 (5)	C2—C3—C27—C28	-117.0 (6)
C2—C1—C7—C12	123.8 (5)	C4—C3—C27—S1	-59.4 (5)
C12—C7—C8—C9	2.7 (9)	C2—C3—C27—S1	66.0 (5)
C1—C7—C8—C9	-174.6 (6)	C30—S1—C27—C28	-0.8 (5)
C7—C8—C9—C10	-1.1 (11)	C30—S1—C27—C3	176.7 (4)
C8—C9—C10—C11	-0.2 (12)	C3—C27—C28—C29	-176.5 (5)

C9—C10—C11—C12	-0.5 (11)	S1—C27—C28—C29	0.8 (7)
C10-C11-C12-C7	2.5 (10)	C27—C28—C29—C30	-0.4 (9)
C8—C7—C12—C11	-3.5 (8)	C28—C29—C30—S1	-0.3 (9)
C1—C7—C12—C11	173.8 (5)	C27—S1—C30—C29	0.6 (6)
O2—O2—C13—C14	0.0 (17)	C6—C5—C31—C32	-48.9 (7)
O2—O2—C13—C2	0.0 (17)	C4—C5—C31—C32	73.0 (6)
C3—C2—C13—O2	68.3 (6)	C6—C5—C31—S2	131.9 (4)
C1—C2—C13—O2	-55.2 (6)	C4—C5—C31—S2	-106.1 (5)
C3—C2—C13—O2	68.3 (6)	C34—S2—C31—C32	-2.9 (4)
C1—C2—C13—O2	-55.2 (6)	C34—S2—C31—C5	176.4 (5)
C3—C2—C13—C14	-110.3 (5)	C5—C31—C32—C33	-174.4 (5)
C1—C2—C13—C14	126.2 (5)	S2—C31—C32—C33	4.9 (6)
O2-C13-C14-C15	171.6 (5)	C31—C32—C33—C34	-5.2 (9)
O2-C13-C14-C15	171.6 (5)	C32—C33—C34—S2	3.0 (8)
C2-C13-C14-C15	-9.8 (8)	C31—S2—C34—C33	0.0 (6)
O2-C13-C14-C19	-6.8 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O1—H1…O2	0.82	2.08	2.663 (5)	127

